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Abstract—The current fault localization techniques for debug-
ging basically depend on the binary execution information which
indicates each program statement being executed or not executed
by a particular test case. However, this simple information
may lose some essential clues such as the branching execu-
tion information for fault localization, and therefore restricts
localization effectiveness. To alleviate this problem, this paper
proposes a novel fault localization approach denoted as FLBF
which incorporates the branching execution information in the
manner of feature selection. This approach firstly uses branching
execution probability to model the behavior of each statement
as a feature, then adopts one of the most widely used feature
selection method called Fisher score to calculate the relevance
between each statement’s feature and the failures, and finally
outputs the suspicious statements potentially responsible for the
failures. The scenario used to demonstrate the utility of FLBF is
composed of two standard benchmarks and three real-life UNIX
utility programs. The experimental results show that input with
branching execution information can improve the performance
of current fault localization techniques and FLBF performs more
stably and efficiently than other six typical fault localization
techniques.

Index Terms—fault localization, branching execution probabil-
ity, feature selection.

I. Introduction
Being a tedious and difficult task in software development

and maintenance, debugging usually requires developers to
consume a significant amount of time and resources in
pinpointing the location of a bug and understanding its cause
of a failure [1]. In order to improve debugging performance,
researchers has devoted much effort to developing automated
fault localization techniques such as [2]–[13].

Many of these techniques usually use the binary execution
information which refers to the information of each program
statement whether being executed or not executed by a partic-
ular test case. Based on the binary execution information and
test results, these localization techniques adopt an evaluation
formula to evaluate the suspiciousness of each statement being
faulty and output a ranked list of all statements in descending
order of suspiciousness. In summary, the basic intuition of
these techniques is that if a statement is executed by a failing
test case, its suspiciousness of being faulty will increase; on
the contrary, if a statement is executed by a passing test case,
its suspiciousness will decrease.

Nevertheless, we can observe that the binary execution
information only shows whether a statement is executed or not
executed by a test case, and thus can miss some useful clues
such as the branching information for fault localization. It is
evident that branching structure is one of the most common
structures in program design and different condition satisfaction
leads to the executions of different branches [14]. In this respect,
if we ignore these essential information from the program, it
may potentially restrict the effectiveness and accuracy of fault
localization. To elucidate this point, here we give a simple
example below.

Suppose that a faulty statement S f and a non-faulty statement
S n belong to two different branching modules. Next, we assume
that the two statements are executed or not executed by the
same test cases. In this way, the two statements should have
the same information of executed or not executed by the test
cases, and thus the current fault localization techniques will
assign the same suspiciousness of being faulty to the two
statements. Since the two statements belong to two different
branching modules, the branching probability of S f should
be different from that of S n. Meanwhile, the execution of the
two statements turn out to be different. Therefore, the two
statements’ suspiciousness of being faulty are supposed to be
unequal and the current fault localization techniques fail to
take this apparent omission into account. In other words, it
means that by incorporating branching probability into fault
localization, we can distinguish more statements’ behaviors
and enrich the resource data which fault localization relies
on, and this may potentially improve the effectiveness and the
accuracy of fault localization.

Therefore, this paper tries to justify the importance of
branching information and incorporate it into the process of
fault localization. Since the calculation of theoretical branching
probability is complicated and even infeasible in practice, we
introduce a concept of branching execution probability, that
is, the ratio of the execution times of a statement located
in a branching module to that of the entire corresponding
branching module. For example, suppose a branching module
contains two branches: the true branch and the false branch.
The whole branching module is executed 10 times by a test
case, and a statement located in the false branch is executed



6 times during the whole 10 times executions. Therefore the
branching execution probability of this statement turns out
to be 0.6 (it is easy to calculate as 6/10=0.6), In contrast
to theoretically defined branching probability which tends to
be complex and difficult to be applied in practical situations,
branching execution probability mentioned above is easy to
calculate and obtain from the execution(s) of a test case or
a set of test cases. Therefore, we can utilize the branching
execution probability to describe each statement’s behaviors
and obtain more subtle and useful information compared with
the traditional simple information of a statement being executed
or not executed.

Feature selection [15], in machine learning and statistics, is
a method selecting a subset of relevant features in the presence
of a reference feature. Inspired by feature selection, we plan
to distinguish the suspicious statements by leveraging feature
selection to find the relevance between the feature of a statement
and that of the test results. Specifically, we propose a Fault
Localization approach using Branching execution probability
in the manner of Feature selection, denoted as FLBF. FLBF
first uses the branching execution probability to describe the
behavior of each statement as a feature. Next, we define the
binary information to represent the test results as a reference
feature. Furthermore, FLBF adopts feature selection to calculate
the relevance between each statement’s feature and the reference
feature. Finally, our approach distinguishes the suspicious
statements in terms of scores evaluated by feature selection.

The contributions of our study are summarized as follows:

• We explore the potential of branching execution prob-
ability and propose an approach leveraging branching
execution probability to capture more subtle and essential
information for improving the efficiency and accuracy of
fault localization.

• We improve representative fault localization techniques
using branching execution probability and experiment
results show evident enhancement in their performance.

• We successfully adopt the methodology of feature se-
lection to incorporate branching execution probability
into the process of fault localization and demonstrate
the promising prospect of feature selection techniques in
fault localization.

• We use common data sets and real-life UNIX utility pro-
grams to evaluate our approach and show its effectiveness
in improving fault localization.

The remainder of this paper is organized as follows. Sec-
tion II introduces necessary background information. Section III
presents our approach. Section IV shows the experimental
results and analysis, and Section V draws the conclusion.

II. Background

This section will introduce those fault localization techniques
using binary execution information (that is the information of a
statement being executed or not executed), and the methodology
of feature selection.
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Fig. 1. Input to Fault Localization Using Binary Execution Information.

A. Fault Localization Using Binary Execution Information

Here we describe the principle of fault localization tech-
niques using binary execution information [5]. Suppose that
there is a program P with its statements S = {s1, s2, ..., sM}

running against the test suite T = {t1, t2, ..., tN}.
Fig. 1 illustrates the input of these techniques, which is a

N × (M + 1) matrix. The element xi j equals 1 if the statement
s j is executed by the test case ti, and 0 otherwise. The result
vector r at the rightmost column of the matrix denotes the
test results. The element ri is 1 if ti is a failed test case, 0
otherwise.

To evaluate the suspiciousness of a statement, these tech-
niques normally utilize the similarity between the statement
vector and result vector of the matrix in Fig. 1. Four statistical
variables are defined for each statement to conduct the similarity
computation, as shown in Eq. 1.

a00(s j) = |{i|xi j = 0 ∧ ri = 0}|
a01(s j) = |{i|xi j = 0 ∧ ri = 1}|
a10(s j) = |{i|xi j = 1 ∧ ri = 0}|
a11(s j) = |{i|xi j = 1 ∧ ri = 1}|

(1)

From Eq. 1, we can observe that a00(s j) represents the
number of passing test cases which does not execute the
statement s j; a01(s j) denotes the number of passing test cases
which executes the statement s j; a10(s j) stands for the number
of failing test cases which does not execute s j; a11(s j) is the
number of failing test case which executes the statement s j.

In recent years, many different suspiciousness evaluation
formulas sprouted up with the help of these four variables to
evaluate the suspiciousness of a statement being faulty and
generate a ranked list of suspiciousness with all statements
in descending order. In order to conduct a comprehensive
evaluation for our approach, we choose six typical fault
localization techniques, among which three are typical human-
deisnged techniques (Ochiai [5], Tarantula [4] and Jaccard [18])
and the other three are machine-learned ones (GP02 [19],
GP03 [19] and GP19 [19]). Table I lists these six representative
suspiciousness evaluation formulas with their specific definition-
s and shows their own means of calculating the suspiciousness
value of the statement s j.

B. Feature Selection

Feature selection (also known as variable selection or
attribute selection) is a process of selecting a subset of
relevant features (such as variables, predictors) for use in
model construction [20], [21]. To be more precise, feature
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TABLE I
Suspiciousness Evaluation Formulas.

Name Formula
Ochiai

a11(s j)√
(a11(s j)+a01(s j))∗(a11(s j)+a10(s j))

Tarantula
(

a11(s j )
a11(s j )+a01(s j ) )

(
a11(s j )

a11(s j )+a01(s j ) )+(
a10(s j)

a10(s j )+a00(s j ) )

Jaccard
a11(s j)

a11(s j)+a01(s j)+a10(s j)

GP02 2(a11(s j) +
√

a00(s j)) +
√

a10(s j)

GP03
√
|a11(s j)2 −

√
a10(s j)|

GP19 a11(s j)
√
|a11(s j) − a01(s j) + a00(s j) − a10(s j)|

selection methods are usually implemented to identify and
remove unneeded, irrelevant and redundant attributes from
data that do not contribute to the accuracy of a predictive
model or may in fact decrease the accuracy of the model [22].
Therefore, those methods have a wide range of applications
in reducing the amount of data to deal with and the effect of
the noise produced in the process, enhancing the performance
of the whole system. The objective of feature selection has
three different levels: enhancing the prediction success rate
of the predictors, presenting more efficient and cost-effective
predictors, and producing a deeper understanding of the
underlying process which produced the data. Generally, there
are three families of feature selection methods: filter methods,
wrapper methods and embedded methods, among which the
filter-based methods rank the features as a pre-processing step
prior to the learning algorithm, and select those features with
high ranking scores [23]. In our study, we focus on one of the
most widely used filter-based supervised methods for feature
selection called Fisher score.

In recent studies, Fisher score(or Fisher kernel) is increas-
ingly utilized as an effective feature extractor for the problems
such as dimensionality reduction and classification [24], [25].
Basically, the Fisher score refers to a vector of parameter
derivatives of loglikelihood in a complicated model [25]. The
main idea of Fisher score aims at finding a subset of features
so that in the data space extended by the selected features, the
distances among the data points in the same class are as small
as possible, whereas the distances among the data points in
different classes are as large as possible [24]. It selects the
feature of each element independently according to the scores
they obtain under the Fisher criterion and produce a suboptimal
subset of features. This can help to transform the input vectors
of variable length to fixed-length vectors effectively. More
specifically, there are m selected features, and the input data
matrix X ∈ Rd×n declines to Z ∈ Rm×n. Then, we compute the
Fisher score as follows:

F(Z) = tr{(S̃b)(S̃t + γI)−1} (2)

where γ represents a positive regularization parameter, S̃b is
called between-class scatter matrix, and S̃t indicates total scatter
matrix, which are defined as

S̃b =

c∑
k=1

nk(µ̃k − µ̃)(µ̃k − µ̃)T

S̃t =

n∑
i=1

(zi − µ̃)(zi − µ̃)T

(3)

where µ̃k and nk represent the mean vector and the size of the
k-th class in the reduced data space. Then we select the top-m
ranked features with the highest scores after calculating the
Fisher score for each feature. The higher score one feature
obtains, the more relevant it tends to be with the selected
features. In terms of fault localization, we are enlightened by
the idea of Fisher score and plan to explore the potential of
it by implementing our method in the following pages (See
Section III).

Feature selection has shown its wide application in fields
like machine learning and pattern recognition [26], but for
the best of our knowledge no one has implemented it in fault
localization. In the following part we will explain its enormous
potential for fault localization problems.

III. Fault Localization using Branching Execution Probability
with Feature Selection

In this section, we present the algorithm of FLBF (Fault
Localization using Branching execution probability with
Feature selection), showing the methodology of FLBF using
branching execution probability in the manner of feature section.
The details of FLBF are described with three main steps as
follows:

Step 1: Define new input matrix using branching exe-
cution probability. As shown in Fig. 1, the input of fault
localization techniques using binary execution information is a
N × (M + 1) matrix. In their matrix, an element xi j equals
1 or 0 according to whether the statement s j is executed
by test case ti or not. However, it fails to distinguish more
subtle statements’ behaviors in the program execution, e.g.,
the branching execution probability of the statements in the
branching module. In order to capture more useful behaviors,
we define new input matrix by using branching execution
probability in this step.

The new input matrix is also a N × (M + 1) matrix. In
contrast to the matrix defined in Figure 1, the new matrix
presents a different consideration for those statements in
the branching modules, that is, the execution information of
those statements in the branching modules should contain the
branching execution information rather than just the simple
information of whether executed or not executed by the test
cases. Therefore, in the new input matrix, there are three
possible situations for a certain element x′i j:
• If the statement s j which exists outside any branching

module is covered by the execution of test case ti, then
the element x′i j equals 1.

• If the statement s j which exists outside any branching
module is not covered by the execution of test case ti,
then the element x′i j equals 0.
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• If the statement s j belongs to a certain branching module
in the program, then the element x′i j should be a decimal
between 0 and 1, which denotes the branching execution
probability of the statement s j during the execution of ti.

By this way, we successfully extend the original input matrix
to contain the essential information of branching execution in
the program.

Step 2: Calculate the branching execution probability.
This step aims at calculating the branching execution probability
of the statements located in branching modules with the new
input matrix.

To facilitate the understanding of the new input matrix, we
demonstrate the calculation of branching execution probability
along with the elements which are already defined in the above
new input matrix. Suppose that statement s j belongs to the
module of a certain branching statement si f

j , and is executed
eti times by a test case ti. Then, we let eti f ( j)

i be the execution
times of si f

j in the test case ti. Consequently, we can now define
the branching execution probability of the statement s j in the
test case ti, which is the value of xi j in the new input matrix,
as follows:

xi j =
eti

eti f ( j)
i

(4)

Furthermore, it is common to see nested branching struc-
ture in different programs, e.g. the program segment from
print_tokens as shown in Fig. 2. To include the information
of nested branching structure, we need to enrich our definition
based on the formula 4. Since the statements of a nested
branching module already owns an execution probability p′

before the execution jumps into those statements, thus the
branching execution probability of each statement in this nested
branching module is supposed to be multiplied by p′. In this
case, the branching execution probability of the statement s j

in ti is defined as follows:

xi j =
eti × p′

eti f ( j)
i

(5)

In order to identify the branching modules belonging to
which branching statement, we search for key words (e.g.,
if, switch) which stand for branching cases in the compiling
phase.

Step 3: Evaluate each statement’s suspiciousness value
using Fisher score. As described in Section II-B, feature
selection can evaluate a feature’s relevance with the accuracy
of the model. Inspired by feature selection and especially by
filter-based methods, we treat each statement’s behavior as
a feature, and evaluate each feature’s contribution to the test
results, as the metric to measure the suspiciousness of each
statement being faulty. Specifically, the vector of each statement
in the input matrix of Fig.3 is a type of expression showing each
statement’s behavior in the program executions. The rightmost
vector is a binary expression denoting the test results of all test
cases. Thus, we use the vector of each statement in the input
matrix as a feature representing their behaviors, and the one

Fig. 2. A Program Segment from print_tokens.
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Fig. 3. New input matrix for Fisher score.

of test results as a reference feature referring to the relevance
of each statement’s feature. Therefore, we adopt Fisher score
to evaluate the suspiciousness value of each statement being
faulty, that is, the relevance of each statement’s feature with
the reference feature. The algorithm of Fisher score using
branching execution information is described as follows:

Firstly, we choose the result vector r = {r1, r2, ..., rN}

as the reference feature. Next, for a statement s j in S =

{s1, s2, ..., sM}, there is a feature belongs to it, which is the
vector f j = {x′1 j, x

′
2 j, ..., x

′
N j}. After that, we apply Fisher

score to calculate the relevance of each statement’s feature
f j (where, j ∈ {1, ...,N}) based on the reference feature r.
Finally, each statement obtains a fisher score, and a higher
fisher score indicates a stronger correlation with the test
results. Therefore, we obtain the fisher score to evaluate
the suspiciousness value being faulty, and then rank all the
statements in descending order according to their Fisher
score value. A higher suspiciousness value indicates a higher
probability of being the root cause of failures.

IV. Experimental Study

A. Experimental Setup

TABLE II
The Summary of Subject Programs.

Program Versions LoC Test Description
print_tokens (2 ver.) 15 570/726 4115/4130 Lexical analyzer

replace 27 564 5542 Pattern recognition
schedule (2 ver.) 16 374/412 2650/2710 Priority scheduler

tcas 29 173 1608 Altitude separation
tot_info 18 565 1052 Info. measure
space 35 6199 4333 ADL interpreter
flex 53 10459 567 Lexical analyzer
grep 29 14427 370 Pattern match
sed 29 14427 370 Stream editor
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To evaluate our approach FLBF, the experiments chose the
subject C programs widely used in most recent work as the
testing benchmarks, namely Siemens, space, flex, grep and
sed. The Siemens were originally developed at the Siemens
Research Corporation and contain 7 programs in total as shown
in Table II [8]. A number of faulty versions with single seeded
faults are produced from these programs. The program space
was first written by the European Space Agency and contains
dozens of faulty versions with single real faults. Besides the
two standard benchmarks, we use three real-life UNIX utility
programs with real and seeded faults to strengthen the effect of
our experiment. The three programs are flex, grep and sed
respectively. Each of these programs has several sequential,
previously-released versions, and each version contains dozens
of single faults. All the subject programs of the study are
obtained from the Software-artifact Infrastructure Repository
(SIR1). In order to guarantee the universality and preciseness of
data, the experiments select the universe test suite that includes
all the test cases provided for each subject program.

Table II shows the information of subject programs and test
suites that we use. The data include the programs (column “Pro-
gram”), the number of faulty versions used by our experiment
(column “Versions”), the lines of code (column “Loc”), the
number of test cases in the universe test suite (column “Test”),
as well as the functional description of the corresponding
program (column “Description”). Because print_tokens and
print_tokens2 have similar structure and functionality, and each
has only a few faulty versions, our experiments show their
combined results to give meaningful statistics. Similarly, we
also combine the results of schedule and schedule2.

Here we divide our experiments into two scenarios. In
the first scenario, we generate input information of all the
fault localization techniques in this experiment only using
binary execution information, even for our approach FLBF. In
the second scenario, we enrich the input information using
branching execution probability. In this way, we can obtain ex-
perimental results of four situations: the six representative fault
localization techniques using binary execution information, the
six representative fault localization techniques using branching
execution probability, Feature score using binary execution
information and Feature score using branching execution
information. It is also easy for us to check the influence of
branching execution probability on the final localization results.

Our study implemented all the experiments on an Ubuntu
10.04 environment. We use the tool gcov to obtain the branching
execution information of the statements in our benchmark
programs.

B. Evaluation Metric

We use the absolute rank of faulty statements in the ranked
list of all statements’ suspiciousness value as a metric to
evaluate the effectiveness of fault localization techniques, as
recommended by Parnin and Orso [27]. A higher rank of faulty
statements means better fault localization performance.

1http://sir.unl.edu/portal/index.php

C. Results and Analysis

In order to compare the performance between our approach
FLBF and the six typical fault localization techniques using
binary execution information, our study analyzes the experiment
results from two aspects: the boxplots and Wilcoxon-signed-
rank testing.

Boxplots We first leverage boxplots of experimental results
to demonstrate the effectiveness of branching execution proba-
bility in input information and compare the performance of our
approach FLBF with six typical fault localization techniques
[28]. Fig. 4 displays boxplots of faulty statements’ absolute
ranks under each fault localization technique against different
subject programs. In every boxplot, a specific technique
on the horizontal axis corresponds to two boxes: the left
box stands for the first scenario and the right box stands
for the second scenario. We can notice that after adding
branching execution probability into input information, every
fault localization technique in this experiment experiences
an integral improvement of result compared with the original
situation. Moreover, it is obvious to notice that FLBF has higher
rank, narrower range of variation and more stable performance
as compared with the results of the other six fault localization
techniques, even if in the first scenario where the input is
binary execution information . Here we take the boxplots of
the program space under the second scenario as example. With
higher ranks, Jaccard, GP01, GP02 and FLBF perform better
as compared with the other ones in space. Meanwhile, FLBF
has the highest average rank and the smallest range of rank
variation. More specifically, the average rank of FLBF arrives at
slightly over 1500 whereas the average ranks of Jaccard, GP01
and GP02 are all around 2000. Therefore, FLBF has a better
performance than the other fault localization techniques in the
program space. Based on the boxplots in Fig. 4, FLBF can
significantly increase the absolute rank of the faulty statement
in each formula of all subject programs, and thus narrow down
the searching domain of faulty statements.

Statistical comparison Although the boxplots provide a
direct visual comparison between FLBF and the six typical
fault localization techniques, a quantitative evaluation is still
indispensable. Therefore, we further conduct a more scientific
and rigorous method, that is, the paired Wilcoxon-Signed-Rank
Test to evaluate the effectiveness of FLBF over that of the other
fault localization techniques. The paired Wilcoxon-Signed-Rank
test is a non-parametric statistical hypothesis test for testing
that the differences between pairs of measurements F(x) and
G(y), which do not follow a normal distribution [29]. It makes
use of the sign and the magnitude of the rank of the differences
between F(x) and G(y). At the given significant level σ, we can
use both 2-tailed and 1-tailed p-value to obtain a conclusion.

The experiments performed one paired Wilcoxon-Signed-
Rank test: the localization effectiveness of FLBF v.s. that of the
other six fault localization techniques all in the second scenario.
Each test uses both the 2-tailed and 1-tailed checking at the σ
level of 0.05. Given a program, we use the list of the ranks
of the faulty statement in all faulty versions of the program
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Fig. 4. Boxplots of the experiment results.

for using our approach FLBF as the list of measurements of
F(x), while the list of measurements of G(y) is the list of the
ranks of the faulty statement for using one of the other six
fault localization techniques. Hence, in the 2-tailed test, FLBF
has SIMILAR effectiveness as the compared fault localization
technique when the null hypothesis H0 is accepted at the
significant level of 0.05. And in the 1-tailed test (right), FLBF
has WORSE effectiveness than the compared fault localization
technique when the alternative hypothesis H1 is accepted at the
significant level of 0.05. Finally, in the 1-tailed test (left), FLBF
has BETTER effectiveness than the compared fault localization
technique when H1 is accepted at the significant level of 0.05.

TABLE III shows the statistical results of FLBF over each of
six typical fault localization techniques in each subject program.
The "total" row demonstrates the statistical comparison between
the ranks of the faulty statements in all faulty versions of all
subject programs using FLBF and those using each of the six
fault localization techniques. As shown in Table III, FLBF
obtains BETTER results over the six typical fault localization
techniques almost on all the subject programs. For example, in
the subject program replace FLBF performs BETTER than
the six fault localization techniques through both 2-tailed
and 1-tailed p-value. However we also notice that there are
six SIMILAR results in TABLE III: FLBF v.s. GP02 (in
print_tokens, schedule and grep), FLBF v.s. GP01 (in tcas and
tot_in f o) and FLBF v.s. Jaccard (in grep). Since the six classic

techniques and FLBF realize fault localization from different
empirical analysis: the former ones focus on the statement
execution and the latter puts emphasis on the data relevance,
they both have deviation from the program’s real data flow and
control flow. On the other hand, the result indicates that FLBF,
at least, has reached the same performance as GP01, GP02
and Jaccard which are the most effective fault localization
techniques in recent researches [19]. In addition, FLBF also
obtains BETTER results on "total" comparison over the six fault
localization techniques. The results identify that the absolute
rank produced by FLBF significantly tends to be less than the
one using the six typical fault localization techniques, that is,
FLBF performs significantly better than the six representative
fault localization techniques based on these subject programs.

D. Threats to Validity

In this section, we summarize the threats to validity of our
study including but not limited to the following three aspects:
threats to internal validity, threats to external validity, and
threats to construct validity.

Threats to internal validity This type of threats involves
the relationship between independent and dependent variables
in this study which are beyond researchers’ knowledge. There
may be chances that some undetected implementation flaws
existing in our experiment may have affected the results. To
ensure the accuracy of the experiments, we have carefully
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TABLE III
Statistical comparison of FLBF and typical fault localization techniques.

Program Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion
FLBF v.s. Ochiai 2.37E-03 9.99E-01 1.33E-03 BETTER

FLBF v.s.Tarantula 2.65E-03 9.99E-01 1.48E-03 BETTER
print_tokens FLBF v.s.Jaccard 3.90E-02 9.82E-01 2.12E-02 BETTER

(2 ver.) FLBF v.s.GP01 1.69E-02 9.22E-01 9.07E-02 BETTER
FLBF v.s.GP02 5.93E-01 7.19E-01 5.12E-02 SIMILAR
FLBF v.s.GP19 1.87E-03 9.99E-01 1.05E-03 BETTER

replace

FLBF v.s. Ochiai 7.49E-04 1.00E+00 3.91E-04 BETTER
FLBF v.s.Tarantula 9.59E-04 1.00E+00 4.99E-04 BETTER
FLBF v.s.Jaccard 4.02E-02 8.03E-01 2.04E-01 BETTER
FLBF v.s.GP01 4.32E-02 7.52E-01 2.55E-01 BETTER
FLBF v.s.GP02 8.49E-03 5.81E-01 4.29E-03 BETTER
FLBF v.s.GP19 1.22E-05 1.00E+00 6.51E-06 BETTER

FLBF v.s. Ochiai 1.56E-02 9.93E-01 8.30E-03 BETTER
FLBF v.s.Tarantula 2.22E-02 9.90E-01 1.18E-02 BETTER

schedule FLBF v.s.Jaccard 1.27E-02 9.39E-01 6.64E-02 BETTER
(2 ver.) FLBF v.s.GP01 1.33E-02 9.36E-01 6.93E-02 BETTER

FLBF v.s.GP02 1.84E-01 9.12E-01 9.56E-02 SIMILAR
FLBF v.s.GP19 2.06E-02 9.01E-01 1.07E-02 BETTER

tcas

FLBF v.s. Ochiai 8.06E-07 1.00E+00 4.19E-07 BETTER
FLBF v.s.Tarantula 6.13E-05 1.00E+00 3.17E-05 BETTER
FLBF v.s.Jaccard 9.00E-03 9.96E-01 4.60E-03 BETTER
FLBF v.s.GP01 2.27E-01 8.88E-01 1.15E-01 SIMILAR
FLBF v.s.GP02 9.41E-03 9.54E-01 4.78E-03 BETTER
FLBF v.s.GP19 1.00E-05 1.00E+00 5.19E-06 BETTER

tot_info

FLBF v.s. Ochiai 2.54E-04 1.00E+00 1.38E-04 BETTER
FLBF v.s.Tarantula 5.35E-04 1.00E+00 2.90E-04 BETTER
FLBF v.s.Jaccard 1.27E-02 9.94E-01 6.81E-03 BETTER
FLBF v.s.GP01 1.93E-01 9.08E-01 1.00E-01 SIMILAR
FLBF v.s.GP02 9.06E-03 5.57E-01 4.62E-03 BETTER
FLBF v.s.GP19 1.07E-03 1.00E+00 5.79E-04 BETTER

space

FLBF v.s. Ochiai 1.04E-03 9.99E-01 5.42E-04 BETTER
FLBF v.s.Tarantula 3.56E-03 9.98E-01 1.85E-03 BETTER
FLBF v.s.Jaccard 1.08E-02 9.95E-01 5.56E-03 BETTER
FLBF v.s.GP01 1.31E-02 9.94E-01 6.74E-03 BETTER
FLBF v.s.GP02 1.96E-03 9.99E-01 1.02E-03 BETTER
FLBF v.s.GP19 3.83E-03 9.98E-01 1.98E-03 BETTER

flex

FLBF v.s. Ochiai 1.52E-01 9.25E-01 7.64E-02 BETTER
FLBF v.s.Tarantula 9.29E-02 4.66E-02 5.37E-01 BETTER
FLBF v.s.Jaccard 2.17E-02 8.92E-01 1.09E-02 BETTER
FLBF v.s.GP01 1.53E-06 1.00E+00 7.83E-07 BETTER
FLBF v.s.GP02 2.60E-04 1.00E+00 1.32E-04 BETTER
FLBF v.s.GP19 4.86E-09 1.00E+00 2.49E-09 BETTER

grep

FLBF v.s. Ochiai 2.87E-01 8.62E-01 1.49E-01 BETTER
FLBF v.s.Tarantula 4.92E-01 7.61E-01 2.54E-01 BETTER
FLBF v.s.Jaccard 6.79E-01 6.70E-01 3.49E-01 SIMILAR
FLBF v.s.GP01 6.20E-03 9.80E-01 3.23E-03 BETTER
FLBF v.s.GP02 8.13E-01 6.03E-01 4.16E-01 SIMILAR
FLBF v.s.GP19 2.66E-02 9.36E-01 1.38E-02 BETTER

sed

FLBF v.s. Ochiai 3.25E-04 1.00E+00 1.71E-04 BETTER
FLBF v.s.Tarantula 4.62E-03 9.98E-01 2.41E-03 BETTER
FLBF v.s.Jaccard 4.87E-02 9.76E-01 2.52E-02 BETTER
FLBF v.s.GP01 2.23E-02 9.89E-01 1.16E-02 BETTER
FLBF v.s.GP02 1.05E-02 9.95E-01 5.49E-03 BETTER
FLBF v.s.GP19 9.04E-03 9.96E-01 4.70E-03 BETTER

total

FLBF v.s. Ochiai 1.31E-13 1.00E+00 6.60E-14 BETTER
FLBF v.s.Tarantula 1.39E-08 1.00E+00 6.95E-09 BETTER
FLBF v.s.Jaccard 6.07E-05 1.00E+00 3.04E-05 BETTER
FLBF v.s.GP01 1.29E-10 1.00E+00 6.48E-11 BETTER
FLBF v.s.GP02 1.92E-07 1.00E+00 9.64E-08 BETTER
FLBF v.s.GP19 2.54E-21 1.00E+00 1.27E-21 BETTER

realized the relevant techniques and comprehensive functional
testing in this article.

Threats to external validity This type of threats corre-
sponds to the generalization of the experimental results. The
threat of external validity is about the subject programs. Aiming
at obtain credible experimental results, we select two standard
benchmarks (Siemens and space) and three real-life UNIX
utility programs (flex, grep and sed) as our subject programs
because they are widely used in the field of fault localization.
However, the type of all faults in these programs is single-fault.
From the experience of real-life projects, a faulty program
may have multiple faults at the same time. For multiple faults,
we can apply the clustering technology(e.g. [6]) to transform
the context of multiple faults into the same kind of single
faults, and thus our approach can be applicable to multiple
faults. In addition, the research [30] has shown that multiple
faults usually pose a negligible effect on the effectiveness of
fault localization in spite of the effect of fault localization
interference. These findings increase our confidence of the
experimental results in the context of multiple faults. Even so,
in the realistic debugging, researchers may encounter many

unknown and complicated situations. Therefore, it is essential
to use more real-life subjects programs (such as multiple-
faults programs and large-sized programs) to further justify the
experimental results.

Threats to construct validity This type of threats concerns
the appropriateness of the evaluation measurement. We use the
rank of the faulty statement in the ranking list to evaluate the
effectiveness of fault localization techniques. This metric is
highly recommended by the recent research [31] [32] and thus
the threat is acceptably mitigated.

V. Conclusion

The huge demand of debugging work from real life is
driving the study of fault localization and development of
different techniques. Many current fault localization techniques
basically depend on the binary execution information which is
the information of each program statement being executed
or not executed by a particular test case. However, this
simple information may miss some essential clues such as
the branching executing information. To alleviate this problem,
this paper proposes a fault localization approach called FLBF
which utilizes the branching execution information in the
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programs and adopts one of the most widely used feature
selection method called Fisher score to rank the suspicious
statements. The scenario used to demonstrate the utility of FLBF
is composed of two standard benchmarks and three real-life
UNIX utility programs. and then we compare FLBF with other
six typical fault localization techniques based on them. In order
to present our experiments in a scientific and rigorous way,
we conduct both the boxplots analysis and Wilcoxon-Signed-
Rank Testing to justify the advantages of our method. The
experimental results show that input with branching execution
information can improve the performance of current fault
localization techniques and FLBF performs more stably and
efficiently than other six typical fault localization techniques.

As for future work, first we plan to enrich our study by
taking more subtle information in the programs into account
such as the looping execution information. After this, we
plan to implement our method on more complex real-life
software projects. This is necessary because many current
fault localization techniques fail to provide stable and effective
solution for those complex programs and the industry has a
huge requirement of truly useful fault localization techniques.
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